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Shepard (1 987) has proposed a universal exponential lawofstimulusgeneralization, yetexperimen- 
tal data are often Gaussian in form. Shepard and othen have prowsed theories to reconcile the 
discnpanc)c although, as proposed henin, a simpk discme diffusffusion process may underlie both 
types of gradient. 

Stimulus generalization is the tendency, after experience with 
a given stimulus, to react in the same way to other, similar 
stimuli. Shepard (1987) has proposed a universal law forstimu- 
lus generalization that deals with relations in a "psychological 
space," established through multidimensional curve-fitting 
techniques (MDS). These methods can discover the smallest 
number of dimensions such that the judged similarity (differ- 
ence) relations between pairs ofstimuli conform to an approxi- 
mately invariant declining monotonic function of the distance 
between them. For example. given stimuli A, B. and C with 
judged difference relations AB = I .  BC = I, and AC = 2, the 

.'% psychological space has just a single dimension because the 
differences among the three stimuli are the same as those 
among three equidistant points alonga line. An invariant simi- 
larity function is the reciprocal, given that similarity = lldiffer- 
ence. 

Shepard (1 987) marshaled both empirical evidence and func- 
tional (optimality) arguments in support ofan exponential gen- 
eralization function. However, published comments on his 
paper noted that the Gaussian function is at least as common 
an experimental finding as the exponential. Shepard (1988a. 
1988b) and Ennis (1988a. 1988b) have both proposed process 
theories to reconcile the Gaussian and exponential data. 

ShepardS suggestion is based on an earlier paper (Shepard, 
1958) in which he introduced the concept ofdrg7iu~ion:"Accord- 
ing to that model. on the removal of an external stimulus. the 
memory trace of the stimulus spontaneously undergoes a con- 
tinuing process not only of simple weakening or decay but also 
of outward diffusion in psychological space" (1988. p. 415). 
Diffusion. of course, yields the Gaussian response-probability 
distribution. which will be increasingly broad as the time of 
testingais delayed after stimulus presentation. In this early 
model, the exponential function is derived by integration across 
pnviods Gaussian traces: "under regularly repeated pmenta- 
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tions of a stimulus, the integrated strength of the accumulated 
traces left by all preceding presentations approximates an expo- 
nential decay function ofdistance from that stimulus in psycho- 
logical space" (1988, p. 415). 

We now show that a recasting ofshepardb proposal yields an 
even simpler way to reconcile the exponential (declining, nega- 
tively accelerated) and Gaussian gradient forms. It turns out 
that both are derivable from the processofdiffusion alone, with 
no need for integration or any other long-term process 

The notion of psychological space makes no obvious contact 
with the possible brain mechanisms that must underlie cogni- 
tion. Perhaps it is premature toexpect such links. Nevertheless, 
it may be helpful when considering possible generalization pro- 
cesses to take some account of how they might be implemented ~- 
by neural machinery The diffusion analysis we present can be 
done either using the continuous mathematics appropriate for 
the concept of psychological space or using the discrete mathe- 
matics that is more natural for dealing with connectionist nct- 
works. We focus on the discrete analysis. 

ShepardS theory is designed for an"idealized generalization 
experiment in which an individual is given a single reinforced ,. -. 
trial with a novel stimulus. . . and then is tested with another 
stimulus from that domain" (1986, p 60). We deal with the 
same experimental situation. Suppose that the psychoneural 
representation of a single stimulus dimension is as a line of 
units. each with four connections (Figure I): two bidirectional 
connections to its two immediate neighbors and an input from 
a perceptual mechanism that allocates a limited region (e& 
wavelength band) of a single sensory dimension to each unit. 
When a given region is pmcnt in the stimulus, the correspond- 
ing unit receives a positive input. Each unit has as its final out- 
put an activation strength, x;, that is its contribution to the 
measured generalization gradient. 

We suppose that the essential property of this very simple, 
locally connected net is that at each time step. the activation of 
each unit moves toward the average of its neighbors'. Formally, 
the change in the strength oftheith unit in aseries will begiven 
by 

where 6xi is the change in x, from one discrete-time iteration to 
the next-that is. xi (I + 1)  - xi ([)-and the term in parentheses 
is the net strength difference between unit i and its neighbon, 
i - 1 and i + I .  Equation I is a discrete-time version of Fick's first 
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Figum I. Psychoneural representation 
of a single stimulus dimension. 

diffusion equation (e& see Berg, 1983). and a is a diffusionate 
parameter. During any iteration, a unit may also receive stimu- 
lus input, so that the net change in activation of a stimulated 
node will be 84 + S,(t). Thus, the whole system can be repre- 
sented as follows: 

where S,(I) is the stimulus input to the ith unit during iteration I. 
The behavior of Equation 2 is illustrated in Figure 2, which 

shows the activation gradient at various points during a total of 
30 iterations. A stimulus was present at Unit 9 for the first 5 
iterations and not thereafter. The light lines show the growth of 
a sharply peaked gradient around Unit 9 during the first 5 itera- 
tions. The gradient increases in amplitude and moves outward 
one unit at each iteration. When .the number of iterations is 
moderate (less than 50 or so, depending on the value of a) the 
generalization gradient is negatively accelerated and closely a p  
proximates an exponential function. The gradient collapses to 

Unit Number (Stimulus Dimension) 
Figtrw 2. Diffusion in a linear network. (Light lines: Exponential gener- 
alization gradient ofactivation produced by Equation 2 when a stimu- 
lus is present [S, - I: lterations 1. 3. and 51. Heavy lines: Gaussian 
gradient produced when thestimulusis withdrawn[& = 0: lterations7. 
9. and 301.) 

Unit Number (Stimulus Dimension) 
Figure 3. Steady-state form of the linear diffusion gradient (stimulus 
p a n t ) .  (Units 0 and 18 are assumed clamped at zero activation. Solid 
lines: Gradient at lterations 1.3, 5.7, and 9. Datted line: Form of the 
arithmetic average gradient [Equation 21 after 100 iterations3 

a Gaussian form when thestimulus is withdrawn after Iteration 
5, as shown by the gradients at Iterations 7, 9, and 30 (heavy 
lines). 

Thus, a diffusion process alone shows both the negatively 
accelerated and Gaussian gradient forms, depending on the ZCI 
time delay between target offset and the onset of the test stim- 
ulus. 

Although the gradient form is approximately exponential 
when a stimulus is present for a moderate number of iterations, 
the true steady-state form of the function is not exponential. It 
approaches a triangle under the following two conditions: (a) if 
the borders (here, the end units) of the net ur abso&ik--tw 
is, their activation value is clampad at h r  (b) if only a finite 
region of the activation profile is considered. Case a is illus- 
trated in Figure 3, which shows the effect of prolonged stimulus 
pmentation. The light lines at the bottom show the approxi- 
mately exponential profile at lterations 1, 3, 5, 7, and 9; the 
dotted line at the top shows the profile a k r  100 iterations. 
Notice that the gradient approaches a stmight-line form rather 
slowly. 

The proof for the steady-state solution is as follows: Let $ = 
K, and all others, 0. Then from Equation 2.8% = a& + x, - 
&) + K. At equilibrium, 8x= 0. Because the gradient must be 
symmetrical about Unit 0 wealso know that x, = L,. Thus, xl - 
&, = +2a, which is also the equilibrium value forq - x, and, 
by induction, all other differences. If all first differences are 
constant, then the function relating x, to i is a straight line. 

The equilibrium form of the gradient predicted by Equation 
2 is related to the form of averaging associated with the diffu- 
sion process (the term in parentheses in Equation 1). Thus, the 
term (x, + x-, - 2x.J implies a linear average. because it is 0 
when (x, + x-,)/2 = xO. If we use a geometric instead of an 
arithmetic average-parenthetical term (x,-,x,, - $)-the 
steady-state gradient resembles the exponential form more 
closely, as shown in Figure 4. This gradient, like the linear one, 
also relaxes to an approximately Gaussian form when thestimu- 
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effects that overlay simple short-termmemory diffusion. The 
advantagesare that the prediction involves just asingle well-un- 
derstood process, relates in a natural way to connectionist 
theory, and can be implemented by a very simple network. 
With slight changes, the rate of spread and the rate of decline in 
peak value of the gradient, which are both determined by the 
same parameter in simple diffusion, can bedissociated without 
changing the other useful properties of the process. This 
scheme can also easily be extended to more than one dimen- 
sion by postulating nearest neighbor connections in nets of two 
or three dimensions. It is easy to derive the effect of complex 
(multiunit) stimuli on the generalization profile. 

MDS analysis of experimental data by Shepard and others 
implies theexistenceofan invariant form of internal repmenta- 

o 2 4 8 8 10 12 11 18 18 tion in thesense that theshapeofthe internal gradient does not 

Unit Number (Stimulus Dimension) 
Figure 4. Steady-state form of the geometric diffusion gradient (stimu- 
lus present). (Units 0 and 18 are assumed clamped at zero activation. 
Light Lines: Gradient at iterations 1,3.5,7. and 9. Dotted line: Form of 
the geometric average gradient aRer 100 iterations A small resting 
activation level was assumed in order to avoid multiplying by 0)  

lus input is withdrawn. Thus, the form of the gradient with or 
without a stimulus pment is not very sensitive to the details of 
-he diffision process 

The most obvious difference between this model and Shep- 
ardb (1 958) earlier model is that diffusion, in our model, occurs 
all the time, both when the stimulus is present and when it is 
not, whereas in Shepard's model diffusion occurs only after the 
stimulus has ceased. This has implications for the outcome of 
recognition experiments of the type described by Shepard 
(1958, p. 247): A subject is shown a certain square (say) for a 
time Z after a delay oft, a second square, which may not be the 
same as the first, is prmnted. Shepard (1958) nported data 
showing that the probability of responding 'samen to the sec- 
ond square is distributed as a Gaussian hnction of the size 
difference between the squares. and the variance increases as a 
function oft. Our model make, the same prediction, but.also 
make, a similar prediction for the effect of T, the duration of 
the first stimulus: If interstimulus intervalt isshort, then recog- 
nition .accuracy should decrease as T increases. Because the 
gradient spread increases during (as well as after) stimulus p r e  
sentation (Figure 2). the larger the value of T, the more subjects 
should confuse the two stimuli. 

The present scheme has both advantages and disadvantages 
relative to Shepard5 (1958) model. The main disadvantage is 
that it involves short-term memory o n b  hence cannot explain 
retrieval dfects that depend on stable stimulus representations. 
Conoequentl~ the experimental prediction just mentioned may 
fail because any practical test will involve lonpterm-memory 

depend on the physical value of the peak stimulus. The diffu- 
sion process has this property in the sense that apart from 
boundary effects, the shape of the gradient, with respect to the 
net of units, does not depend on which unit is at the peak. 
Differrnt forms of qualgmeralization contours for multidi- 
mensional stimuli can perhaps be accommodated by different 
diffusion rates in different directions within the net. Although 
our scheme is inadequate as a complete model for the general- 
ization process (ie, for the entire processof perceptual recogni- 
tion and categorization), it may provide useful insights into dy- 
namics and may either form part of, or represent a limiting case 
of, a more comprehensive theory that is yet to be developed. 
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