Chapter 9

Experimental design:

Between-subject design
Between-subject design (Bet-Ss)
- aka “Between-participant design”
 - Grps get different treatment
 - Quasi:
 - Grps different based on person variable (age, gender...)
- Experimental design and vocabulary
- Threats to internal validity
- Threats to external validity

Within-subject design (W/in-Ss)
- aka “Correlated-groups designs”
- Within-participants design
- Matched-participants design
Introduction
- Can we improve memory for nonsense pics w/ cue?

Method
- Study: See 28 pics (w/ or w/o label)
- Test: Immediate recall (draw)

Results
- Label: 70% (SE = 1.25)
- No label: 51% (SE = .92)
- $t(16) = 3.43, p < .01$

Discussion
- Memory significantly improved by use of verbal label

Droodles by Roger Price
a. 4 elephants sniffing an orange
b. An early bird catching a very strong worm
c. A man in a mailbox signaling a left turn
Experimental design

- What is independent variable (IV)?
 - What are the *levels* of the IV?
 - What is the control group?
 - What is the experimental group?
- What is dependent variable (DV)?
 - What is measured?

- If you were to design a replication of the study, what would you need to control?
 - What are the potential confounds in the experiment?
 - Is difference in DV due to expmt’l manipulation?
 - What population do you want the sample to represent? Who do you want to make conclusions about? How do select sample?
 - You want maximal reliability, internal and external validity!
Confounds

- Are results due to the effect of IV or confound?
- Example: Quinn, et al. (1999)
 - Examine if night lights for kids (<2) creates myopia (nearsighted)
 - Results: w/o 10% myopic; w/ night light 45% myopic
 - Confounds?
 - Parents w/ myopia need night light so they can see in room
 - Data collected in eye clinic so non-normal population
 - Relied on parental memory for 6yrs prior (on avg)

- Effect of confounds:
 - Confound can systematically affect Ss in 1 grp differently than other grp
 - Confound can obscure real difference between grps by raising or lowering scores in 1 grp
- It can be difficult to spot confounds!
Horner (1968, as cited in Kasof, 1993)

- **Method:**
 - Study phase: Read story
 - Test phase: write summary about story
 - IV: Male Ss read about a male character (John); Female Ss read about a female character (Joan)

- **Result (Horner, 1968)**
 - Women wrote more negative comments about character

- **Conclusion**
 - Women show fear of success

- **Confounds according to Kasof (1993)**
 - Ss’s interpretation of names (how smart/attractive they are based on name)
 - Others?
Threats to internal validity

Internal validity: Extent results due to effect not confounded

- Nonequivalent control grp
 - Grps different before testing
- History
 - Time of measurement effect
- Maturation
 - Aging effect
- Testing effect
 - Practice effect or fatigue effect
- Regression to mean
 - Effect of extreme scores
- Instrumentation effect
 - Measurement error
- Mortality or attrition
 - Effect of drop-out or death
- Diffusion of treatment
 - Biased by prior Ss
- Experimenter or participant effects
 - Experimenter bias
 - Reactivity; placebo effect
- Ceiling and floor effects
 - DV not sensitive measure
Examine anxiety disorders

IV: 3 therapy conditions
- Psychodynamic
- Behavioral
- Control

Results
- Any therapy helps
Loftus & Palmer (1974)

Depiction of actual accident

Ss watch slides of accident

Leading question:
“About how fast were the cars going when they **contacted/smashed** into each other?”

1wk later:
“Did you see broken glass?”

- “Contacted”
 - 32 mi/hr
 - Yes glass 11%

- “Smashed”
 - 41 mi/hr
 - Yes glass 32%

Memory construction
Ross, et al. (1994)

Experimental
- View film of male teacher reading to students.
- View film of female teacher getting robbed.
- Test: Pick robber from photospread.

Control
- View film of female teacher reading to students.

(b) Actual robber not in photospread
- Percent identified male teacher: E (60), C (20)

(c) Actual robber was in photospread
- Percent identified male teacher: E (20), C (20)
Schuman & Scott (1989)

- “the most important public or political event of past 70 years”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ss age in 1989
Ss year of birth
Bargh, Chen, & Burrows (1996)

- Ss fill-out “test of language ability”
- Unknowingly “primed” w/ stereotypes of words in 1 of 3 categories
- Examine how quickly Ss interrupts conversation of experimenter w/ friend

Figure 1. Percentage of participants who interrupted the experimenter within the 10-min period, by trait priming condition (Experiment 1).
Method

Watch video
- w/ or w/o gun being shot

DV: EDR or stress response

IV: group
- Police officer
- Citizen

Figure 1. Mean electrodermal response (EDR) as a function of shoot condition and time for police and citizen witnesses. The arrow indicates the point in the scenarios when a shooting occurs.
- Ss given “visual test”
- Unknowingly “primed” w/ pics of A-A or caucasian faces
- Exp3: examine hostility rating after told about “computer error”
- Rated by experimenter and blind coders
Prospective memory (PM)

- Einstein & McDaniel (1990)
- Question:
 - What is effect of cue familiarity on PM
- Method:
 - Press key when see cue word
 - IV: familiar vs unfamiliar cue word
- Results:
 - 3x more likely to press key for unfamiliar cue word than familiar cue word

How likely are you to forget PM task?
- Effect of background task
- Effect of importance

- **Method**
- **IV**: group (training vs. no training)
- **Training**: 12+ days on working memory task
- **DV**: Performance on intelligence task before and after training sessions
Method:

Baseline task:
- Find repeated # in series of 10 #s

Transformation task:
- Add or subtract 1 to each #, then find repeated # in series of 10 #s

IV: Age (Yng v Older)
DV: Accuracy
Duke undergraduates tested day after 9/11 (Flashbulb memory - FB)
Tested again at 1, 6, or 32 weeks after 9/11
DV: consistency of FB and everyday memory
Results:
 - Both types of memory declined over time
 - No relationship between accuracy and confidence in memory
Threats to internal validity

How to prevent these potential confounds

- Nonequivalent control grp
 - Use random assignment
 - Use pretest/posttest design
- History
 - Test at different time pts
- Maturation
 - Use control group
- Testing effect
 - Use control group
- Regression to mean
 - Use control grp w/ same extreme scores

- Instrumentation effect
- Mortality or attrition
- Diffusion of treatment
 - Tell Ss not to discuss study
- Experimenter or participant effects
 - Use single-blind or double-blind method
 - Use placebo group
- Ceiling and floor effects
 - Carefully select DV to avoid
Threats to external validity

- External validity: Results can be generalized beyond lab
- Generalization to population of interest
 - “College sophomore problem”
 - Replicate with other groups
 - Will that sample act like population?
 - Consider different socioeconomic and geographic variables
- Generalization beyond lab setting
 - Lab setting = good internal validity b/c more control
 - But, can = poor external validity b/c more artificial
 - Exact replication study
 - Systematic replication study
 - Conceptual replication study
Replication of Bower, Karlin & Dueck (1975)

If you were to design a replication of the study, what would you need to control?

- Nonequivalent control grp
 - Use random assignment
 - Use pretest/posttest design
- History
 - Test at different time pts
- Maturation
 - Use control group
- Testing effect
 - Use control group
- Regression to mean
 - Use control grp w/ same extreme scores
- Instrumentation effect
 - Use control group
- Mortality or attrition
 - Use control group
- Diffusion of treatment
 - Tell Ss not to discuss study
- Experimenter or participant effects
 - Use single-blind or double-blind method
 - Use placebo group
 - Use good “cover story”
- Ceiling and floor effects
 - Carefully select DV to avoid