Left Handed Split Brain

- Case study V.J.: Gazzaniga, 1998
 - Left handed split brain patient
 - Spoke out of left hemisphere
 - Wrote out of right hemisphere
 - Writing = independent from language systems
- Frey et al. 2005
 - BOTH left handed and right handed split-brain patients use their left hemisphere when manipulating and naming tools

Learning Objectives Topics

- How are Sensation and Perception different?
- Bottom-up vs. Top-Down processing
- Bottom up Processing
 - Feature Detectors
 - Experience Dependent Plasticity
 - Recognition by Components
- Top Down Processing
 - Influence of prior knowledge
 - Perceptual Organization
 - Gestalt “Laws”
 - Motion
Does knowledge affect our perception?

- Give examples from the real world:

- How can our expectancies or prior knowledge lead us to view the world accurately at times and inaccurately at others?

- How might different people interpret the same stimulus differently?

Top Down Processing
Tox-Doxn Pxoxssxnxng

- To xllxstxatx, I cxn rxplxce xvexy txirx lextex of x sextexce xitx an x, anx yox stxll xan xanxge xo rxad xt – ix wxh sxme xifxicxltx

- Context and knowledge fills in the rest!
- The redundancy of stimuli provide more features than required

Oliva & Torralba (2007)

- Q: Does perception depend on more than just stimulation of receptors?
- Method:
 - Use same “blob” in multiple contexts
- Result:
 - Perceived as different objects due to top-down processing
Oliva & Torralba (2007)

- Conclusion:
 - Signal from object (visual system)
 - Signal from context (visual system)
 - Feedback signal: influence of knowledge (higher processing centers)
 - How does this go against the recognition-by-components theory?

Theory of perception

- Bottom-up AND top-down
- Bi-directional or connectionist model
How do we judge size?

- Depth perception
- Size on retina?
- Feedback signals – use context
- **Relative size** – size relative to other objects
- **Size constancy** – perceive objects as same size when move to different distances

How do we judge smell intensity?

Odor intensity: Tegotsoonian et al., 1978 study

- What should our DV and IV be?
- Results?
- Meaning?
- Adaptive?
How do we discriminate words?

- Perception of language
 - Speech segmentation

- https://www.youtube.com/watch?v=WakjpNgbTNo

Make sure that you know how top down vs. bottom up processing affects each of those examples.

- Size
- Smell
- Speech
Hollingworth (2005)

- **Question**
 - How does knowledge of what objects belong in a scene influence perception?
 - *Semantic regularities* (knowledge of function of objects)

- **Method**
 - Study scene 20s
 - IV: w/ or w/o target object
 - Test: Place target object in scene
 - By memory or expectation

- **Result**
 - Accurate position in both conditions
 - Prediction based on experience

Palmer (1975) Demo

You will see a picture flash up on the right. Say what it is as fast as you can.
Which do you think was faster?

- Draw graph
- Appropriate = bread
- Inappropriate = Drum
- Misleading = Mailbox

Palmer (1975)

- **Method**
 - Present scene
 - Ss ID flashed pics
 - (a) or (b) or (c)
 - IV: type of picture
 - DV: accuracy

- **Conclusion**
 - Bottom-up perception interacts with prior knowledge (top-down) to influence response
Word recognition

- Flash stimulus
 - Word condition: FORK
 - Letter condition: K
 - Nonword condition: RFOK
- Choose letter that was presented
 - K or M
- Result:
 - Faster and more accurate when letter part of original stimulus (word condition)
 - Word superiority effect

Demonstration

- One half of the class, close your eyes
Demonstration

- Now other half, close your eyes
Demonstration

What is this? (write it down)
Rat-man demonstration

- Method:
 - Show 1 of 2 pictures (man or rat)
 - Then show ambiguous picture
 - What is it?
- Conclusion:
 - Effect of prior knowledge
 - “Priming”

Learning Objectives Topics

- How are Sensation and Perception different?
- Bottom-up vs. Top-Down processing
- Bottom up Processing
 - Feature Detectors
 - Experience Dependent Plasticity
 - Recognition by Components
- Top Down Processing
 - Influence of prior knowledge
 - Perceptual Organization
 - Gestalt “Laws”
 - Motion
Perceptual Organization

- How do we know what is a face and what is not?
- How do we know what is going on when something is blocked?
- Gestalt Laws can help!
 - And we do this unconsciously!
- Remember: Gestalt = “whole is more than the sum of the parts”

Perceptual Organization

- “Old” view – structuralism
 - Perception involves adding up sensations
- “New” view – Gestalt psychologists
 - The mind groups patterns according to laws of perceptual organization
Principles of organization

- We make unconscious assumptions about what we perceive!
- Gestalt laws of “perceptual organization”
 - We organize our world and fill in the gaps
 - Based on what usually happens
- Laws or heuristics (“best guess”)?
 - Don’t always accurately predict what is going on
- For each of these – try to remember them. We will do an activity that requires you to know the heuristics without looking.

Gestalt Laws of Perceptual Organization

- Law of good continuation
 - Lines tend to be seen as following the smoothest path
Gestalt Laws of Perceptual Organization

- Law of good figure (simplicity or prägnanz)
 - Every stimulus pattern is seen so the resulting structure is as simple as possible

- Law of similarity
 - Similar things appear grouped together
Gestalt Laws of Perceptual Organization

- **Law of familiarity**
 - Things are more likely to form groups if the groups appear familiar or meaningful

- **Law of proximity**
 - Things near each other appear grouped together

- **Law of common fate**
 - Things moving in the same direction appear to be grouped together

https://www.youtube.com/watch?v=nuH6dIcgaoU
Other Perceptual Heuristics

- **Light-from-above heuristic**
 - Light comes from above
 - Is usually the case in the environment
 - We perceive shadows as specific information about depth and distance

- **Occlusion heuristic**
 - When object is partially covered by a smaller occluding object, the larger one is seen as continuing behind the smaller occluder
Gestalt law (or heuristics!) examples

1. Use the Gestalt laws to explain this picture.

Perceptual Organization

- Use the Gestalt laws to explain this picture.
Perception problems for computers

- Stimulus on receptors is ambiguous
 - Inverse projection problem
- Segmentation
 - Visual separation/overlap
 - Speech segmentation
- Visual or verbal noise
 - Occlusions or obscured
 - Blurred or degraded
 - Changes in shadowing (lightness/darkness)
- Human perception is different due to bottom-up AND top-down processing!

Learning Objectives Topics

- How are Sensation and Perception different?
- Bottom-up vs. Top-Down processing
- Bottom up Processing
 - Feature Detectors
 - Experience Dependent Plasticity
 - Recognition by Components
- Top Down Processing
 - Influence of prior knowledge
 - Perceptual Organization
 - Gestalt “Laws”
 - Motion
Apparent motion/motion illusions

- Pikler-Ternus display:
 - http://michaelbach.de/ot/mot_Ternus/index.html
- “Rotating snake”
 - http://michaelbach.de/ot/mot_rotsnake/index.html
- “Freezing rotation”
 - http://michaelbach.de/ot/mot_freezeRot/index.html
- “Stepping feet”

- Apparent motion factors
 - Color, shape, perceived depth, context

Mitroff & Scholl (2005)
http://michaelbach.de/ot/mot_mib/index.html

- Method:
 - Motion-induced blindness (MIB)
 - Objects superimposed on global motion pattern
 - Change target objects during MIB
- MIB effect
 - Objects fade from awareness while looking
Mitroff & Scholl (2005)
http://michaelbach.de/ot/mot_mib/index.html

- Questions:
 - *What happens if change unseen objects?*
 - Add a bar between the dots
 - http://www.yale.edu/perception/Brian/demos/MIB-Updating.html
 - Do you have to be consciously aware for the gestalt rules of perception to apply?

Mitroff & Scholl (2005)

- Method
 - Ss press a key when experience MIB (dots disappear) and when reappear
 - Choice: simultaneous, one disk, not sure
 - IV: line changes (50% chance that connecting line changes)
Mitroff & Scholl (2005)

- Results
 - Report reappeared simultaneously if dots connected by bar, even if connection occurred during MIB
 - Object representations can be formed and updated without awareness (conscious perception)

![Graph showing simultaneous reports](image)

Both dots occurred simultaneously if connected by line after.

MIB with Grouping Cues

Result:
More likely to reenter awareness together if grouped together by gestalt principle!
Chapter 3: Perception

- Research questions
 - What are the processes responsible for perception?
 - How do we recognize objects?
 - Why is perception difficult for computers?
- Methods
 - Identify objects in pictures or read words
 - With or without “noise”
 - With or without prior information (context)
 - Indicate what you see with an illusion
- Results
 - Requires combination of bottom-up and top-down processing
 - Use (gestalt/heuristic) rules of perceptual organization
 - Experience-dependent plasticity: depends on experiences
- Future directions

Current research in perception
Presentations: Psychonomic society conference 2011&2012

- Metacontrast masking is processed before color-grapheme synesthesia
- Action-specific effects are immune to spiders
 - Perception is influenced by ability to act; examined perceptual processing of spiders (Conclusion: spiders were faster than balls)
- Picture ahead! Picture superiority in memory for road signs.
- Relative velocity and relative strength of illusory line motion
- Heuristic spatial updating across abrupt perspective changes in dynamic scenes
- Color, music and emotion
- Auditory perceptual learning through multimodal training