Baddeley & Hitch (1974)

Diagram:
- **Phonological loop**
 - Storage (passive)
 - Rehearsal (active)
- **Central executive**
- **Visuospatial sketch pad**
 - Visual information
 - Spatial information

Baddeley's working memory model
Recall the words

BEAR, SPOT, TRAIL, LOW, TEAR, GOOD
CogLab: Operation span

- Spring ‘12 N=14
- Span score: sum of all sequence lengths recalled correctly while processing math
- Max score = 60
- Math accuracy needs to be > 85%
- Class data:
 - Math accuracy = 97.7%
 - O-span score = 43.1 (SD =11.46)
WM span tasks

- Span tasks
 - Measure capacity while processing
- Examples:
 - Forward digit span, letter span, word span
 - Backward digit span
 - Visual memory span
 - Size judgment span
 - Computation span
 - Reading span
 - ETC!
CogLab: Memory Span

- Class results: N = 10 (Fall ‘09)
- Span score (sd)
 - Numbers: 6.2 (1.87)
 - Letters (sound different): 5.4 (1.35)
 - Letters (sound similar): 5.0 (1.56)
 - Words (short): 5.3 (1.06)
 - Words (long): 4.3 (0.95)
WM and individual differences

Question:
- Why is there a relationship between WM span and higher-level cognitive tests?
- What accounts for the correlations?

http://www.stat.berkeley.edu/~stark/Java/Html/Correlation.htm
Correlation between WM span and:

- Reading and listening comprehension
- Vocabulary and new vocabulary learning
- Computer-language learning
- Following directions
- Note taking
- Writing
- Reasoning
- Bridge playing
- Verbal scholastic aptitude test
- Verbal and quantitative SAT
WM and individual differences
Daneman & Carpenter (1980)

Method: Tasks given to yng adults
- Reading span
- Nelson-Denny reading comprehension test
- Pronoun reference test

Results: Examine correlations
- Reading span and reading comprehension $r = 0.55$
- WM span and verbal SAT $r = .59$
- WM span and pronoun reference test $r = 0.9$
- WM correlates with overall measures of intelligence! (r's = 0.3 to 0.4) ... WHY??
WM span processes (if O-span task)

- Processing (of math)
 - Central executive
 - Use long-term memory for math knowledge
- Encoding and storage (of words)
 - Phonological loop
- Recall (retrieve) words

- Dual-task: simultaneous processing and storage
- Switching: between math/memory tasks
- Keep information “active” (rehearsal process)
- Resist interference (or decay of info)
Higher cognitive processes
e.g. Reading comprehension

- **Focused attention**
 - On words, sentence structure, paragraph
 - Keep certain information “active”

- **Comprehension**
 - Processing meaning by using long-term memory
 - Storage of previous information for context
 - Compute semantic and syntactic relations among words to create representation of information
 - Dual-task: simultaneous processing and storage

- **Selective attention: Block distractions**
 - Resist interference due to previous sentences
 - Environmental interference
 - Extraneous thoughts
Theories for WM correlations

- What is the source of individual differences?
 - General processing hypothesis
 - Low WM span: Inefficient processing
 - Trade-off of resources for processing & storage
 - If processing automatic, more resources for storage
 - Task specific hypothesis
 - Specific cognitive process is more efficient/automatic
 - General capacity hypothesis
 - High WM span: more attentional resources
 - WM capacity separate from STM capacity
Conway & Engle (1996)

Methods

- **Session 1**
 - **Original Ospan**
 - y/n math; say word out-loud; recall (write) words at end
 - Series varies from 2-6 words to remember (x3)
 - Randomized series (max score = 60)
 - Math must be 85% or greater
 - **Backward letter task**
 - Auditory presentation (1/sec); recall reverse order

- **Session 2**
 - **Mathematical operations**
 - 15 types: e.g. (a+b) vs (a*b)-c
 - Operation type for: 92% acc, 80-88% acc, 68-76% acc

- **Session 3**: 3 Ospan tasks (w/ math difficulty equated)
 - Also recorded “viewing time”
Predictions by each theory

- General processing hypothesis
 - No correlation between VSAT and Ospan when processing demand equated

- Task specific hypothesis
 - No correlation between VSAT and Ospan

- General capacity hypothesis
 - Correlation between VSAT and Ospan even when processing demand equated
 - “regardless of the demand of the processing component of the task, individual diffs in span remain”
Conway & Engle (1996)

words recalled on O-span

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Easy</th>
<th>Moderate</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

Viewing time of math problems

<table>
<thead>
<tr>
<th></th>
<th>Easy</th>
<th>Moderate</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
</tr>
</tbody>
</table>
Conway & Engle (1996)

This suggests that individual differences in span are not accounted for by differing ability on the processing component of complex span tasks

<table>
<thead>
<tr>
<th></th>
<th>VSAT</th>
<th>Original</th>
<th>Easy</th>
<th>Moderate</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy</td>
<td>0.62</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>0.49</td>
<td>0.68</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult</td>
<td>0.54</td>
<td>0.68</td>
<td>0.72</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Backward Letter</td>
<td>0.44</td>
<td>0.41</td>
<td>0.33</td>
<td>0.43</td>
<td>0.37</td>
</tr>
</tbody>
</table>

All $p<.01$
Table 5: correlations w/ and w/o viewing time partialled out - unchanged
Conway & Engle (1996)

- Equate processing (math) demands on O-span
 - Easy, Med, Hard
- Correlate VSAT performance
- Results: $r = 0.49$ to 0.62
 - Unchanged compared to original ($r = .59$)
- Conclusions:
 - Individual differences due to “general controlled effortful attentional resources”
 - Individual diff’s only when engage in effortful processing
- But, what IS “attentional capacity”?
 - Individual diff’s in ... Resist inhib? Shifting? Controlled att?
Conway & Engle (1996)

- Support for general capacity hypothesis
 - # of words recalled does not vary with math difficulty
 - All span tasks (original and modified) correlate with VSAT
 - Easy O-span accounted for majority of variance in VSAT

- Why?
 - O-span requires attention switching
 - Existence of processing component beyond storage capacity measures WM – and predicts individual diff’s!

- Conclusions:
 - Differences in attention capacity is reason for individual differences in WM capacity
 - WM capacity changes performance on many tasks
WM span and...

- Attention
 - Dichotic listening
 - Stroop

- Inhibition
 - Posner’s cueing task
 - Eye movements
 - Intrusive thoughts questionnaire

- Memory (STM and LTM)
 - Verbal fluency
 - Brown-Peterson
 - Memory search
WM and dichotic listening

- Conway, Cowan, and Bunting (2001)
- Operation span
 - Low and High WM span groups
- Selective listening procedure
 - Male versus female voice reciting words
 - Shadow right ear
 - After shadowing asked about irrelevant message
- Results
 - Low WM span: detected name 65%
 - Hi WM span: detected name 20%
WM span and Stroop

Percentage of errors

Percentage of congruent trials

- High span
- Low span

- 0% cond
- 50% cond
- 75% cond
WM and inhibition

- **Kane, Bleckley, Conway, & Engle (2001)**
 - WM span and spatial cueing
 - Valid and invalid cueing (Posner task)
 - Hi span Ss better performance than low span Ss on invalid trials

- **Roberts, Hager, & Heron (1994)**
 - Antisaccade task (invalid cue to move eyes) with dual-task
 - Hi span better performance
 - Hi span allocate attention to whole display; Low span focused attentional spotlight
WM and LTM

- Rosen & Engle (1997)
 - WM span and verbal fluency
 - Generate as many words as possible that start with “F”
 - High span better than Low span
 - Add dual-task (monitor digits for 3 odd #s in row)
 - Result: Hi span perform like low span (w/o dual-task)

- Kane & Engle (2000)
 - WM span and Brown-Peterson task
 - Low span greater proactive interference

- Conclusions?
WM and intelligence

- WM Span and VSAT
 - $r = 0.6$

- Carpenter, Just, & Shell (1990)
 - Raven’s progressive matrices
 - O-span

- WM overall measures of intelligence
 - $r = 0.3$ to 0.5
WM model: Engle (2001)
Other theories and questions...

- **Time-based forgetting theory**
 - More time processing → more decay/interference
 - “Speed of processing” theory

- **Strategy theory of individual differences**
 - Train storage strategy (e.g. rehearsal)

- **Can we change overall capacity of WM?**
 - Verhaeghen, Cerella, & Basak (2004)
 - Training on WM task for 10 hours!
 - Increase “Focus of Attention” from 1 to 4 items
Jaeggi et al. (2008)

Examine “transfer effects” to fluid intelligence (Raven’s progressive matrices)